Skip to content
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
  1. Home
  2. Models
  3. Mistral Devstral Medium
  4. Estimate Complexity

See how Mistral Devstral Medium compares on this challenge:

  • Mistral Devstral Medium vs Claude Sonnet 4.6
  • Mistral Devstral Medium vs Gemini 3.1 Pro Preview
  • Mistral Devstral Medium vs Z.ai: GLM 5

4 models have responded to the "Estimate Complexity" challenge. Compare their approaches side-by-side on RIVAL. This response is part of RIVAL's open dataset of 5,600+ AI model responses.

Rival
Models
CompareBest ForArena
Sign Up
Sign Up
Back to Mistral Devstral Medium

Estimate Complexity

Devstral Medium's response to the 'Estimate Complexity' challenge.

Mistral Devstral Medium
July 11, 2025
Text

?
Prompt

Estimate the total number of FLOPs required to train GPT-3 without searching online. Explain your reasoning step by step.

Mistral Devstral Medium
Response

devstral-medium logo
Mistral Devstral MediumEstimate Complexity
devstral-medium logo
Mistral Devstral Medium

To estimate the total number of FLOPs (floating point operations) required to train GPT-3, we'll use the following steps:

  1. Model size: GPT-3 has 175 billion parameters.
  2. Training tokens: GPT-3 was trained on 300 billion tokens.
  3. FLOPs per token: To estimate the FLOPs per token, we'll use the rule of thumb that training a transformer model requires about 6 FLOPs per parameter per token.
  4. Total FLOPs: Multiply the number of parameters by the number of tokens and the FLOPs per token.

Now let's calculate:

  1. Model size: 175 billion parameters = 175 * 10^9
  2. Training tokens: 300 billion tokens = 300 * 10^9
  3. FLOPs per token: 6 FLOPs per parameter per token
  4. Total FLOPs: (175 * 10^9) * (300 * 10^9) * 6 = 3.15 * 10^23 FLOPs

So, the estimated total number of FLOPs required to train GPT-3 is approximately 3.15 * 10^23.

Estimate Complexity

Turn this model response into notes, narration, or a short video

Auto NotesTranscriptNarrateVideo Cut

Partner link

This output is part of our open dataset — 5K+ AI responses across 200 models

About Mistral Devstral Medium

Capabilities

ConversationReasoningCode GenerationAnalysis

Categories

TextCode

Specifications

Provider
Mistral
Released
2025-07-11
Size
MEDIUM

Keep exploring

SAME PROMPT

Claude Sonnet 4.6's version

Same prompt, different result

COMPARE

Mistral Devstral Medium vs Gemini 3.1 Pro Preview

Both outputs, side by side

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival