Skip to content
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
  1. Home
  2. Models
  3. GPT-4o (Omni)
  4. Estimate Complexity

See how GPT-4o (Omni) compares on this challenge:

  • GPT-4o (Omni) vs Claude Sonnet 4.6
  • GPT-4o (Omni) vs Gemini 3.1 Pro Preview
  • GPT-4o (Omni) vs Z.ai: GLM 5

4 models have responded to the "Estimate Complexity" challenge. Compare their approaches side-by-side on RIVAL. This response is part of RIVAL's open dataset of 5,600+ AI model responses.

Rival
Models
CompareBest ForArena
Sign Up
Sign Up
Back to GPT-4o (Omni)

Estimate Complexity

Gpt 4o's response to the Tests an AI's ability to make educated estimates based on technical knowledge

GPT-4o (Omni)
February 28, 2025
Text

?
Prompt

Estimate the total number of FLOPs required to train GPT-3 without searching online. Explain your reasoning step by step.

GPT-4o (Omni)
Response

gpt-4o logo
GPT-4o (Omni)Estimate Complexity
gpt-4o logo
GPT-4o (Omni)

To estimate the total number of FLOPs required to train GPT-3, let's break it down into key components.

1. Model Size and Parameters

GPT-3 has 175 billion parameters.

2. FLOPs per Forward and Backward Pass

In deep learning, the FLOPs required for a forward pass and backward pass are estimated as:

  • Forward pass: ( 2 imes ) the number of parameters
  • Backward pass: ( 2 imes ) the FLOPs of the forward pass

Thus, total FLOPs per training step:

[ ext{Total FLOPs per step} = 6 imes ext{number of parameters} imes ext{tokens per batch} ]

For GPT-3, let's assume 175B parameters and a batch size of 2048 tokens (common for large-scale training).

[ ext{FLOPs per training step} = 6 imes 175 imes 10^9 imes 2048 ]

[ = 2.15 imes 10^{15} ext{ FLOPs per step} ]

3. Total Training Steps

GPT-3 was trained with 300 billion tokens (as per OpenAI's paper).

If the batch size is 2048 tokens, the total number of steps is:

[ ext{Total steps} = rac{300 imes 10^9}{2048} approx 1.46 imes 10^8 ]

4. Total FLOPs Required

Multiplying the FLOPs per step by the total number of steps:

[ ext{Total FLOPs} = (2.15 imes 10^{15}) imes (1.46 imes 10^8) ]

[ approx 3.14 imes 10^{23} ext{ FLOPs} ]

Final Answer:

The estimated total number of FLOPs required to train GPT-3 is about ( 3.14 imes 10^{23} ) floating point operations.

Estimate Complexity

Turn this model response into notes, narration, or a short video

Auto NotesTranscriptNarrateVideo Cut

Partner link

This output is part of our open dataset — 5K+ AI responses across 200 models

About GPT-4o (Omni)

Capabilities

ConversationReasoningAnalysisCode GenerationImage Generation

Categories

TextVisionMultimodal

Specifications

Provider
Openai
Released
2024-05-13
Size
XLARGE
Parameters
1.8T
Context
128,000 tokens

Keep exploring

SAME PROMPT

Claude Sonnet 4.6's version

Same prompt, different result

COMPARE

GPT-4o (Omni) vs Gemini 3.1 Pro Preview

Both outputs, side by side

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival