Skip to content
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
  1. Home
  2. Models
  3. GPT-5.1-Codex
  4. Estimate Complexity

See how GPT-5.1-Codex compares on this challenge:

  • GPT-5.1-Codex vs Claude Sonnet 4.6
  • GPT-5.1-Codex vs Gemini 3.1 Pro Preview
  • GPT-5.1-Codex vs Z.ai: GLM 5

4 models have responded to the "Estimate Complexity" challenge. Compare their approaches side-by-side on RIVAL. This response is part of RIVAL's open dataset of 5,600+ AI model responses.

Rival
Models
CompareBest ForArena
Sign Up
Sign Up
Back to GPT-5.1-Codex

Estimate Complexity

Gpt 5.1 Codex's response to the 'Estimate Complexity' challenge.

GPT-5.1-Codex
November 13, 2025
Text

?
Prompt

Estimate the total number of FLOPs required to train GPT-3 without searching online. Explain your reasoning step by step.

GPT-5.1-Codex
Response

gpt-5.1-codex logo
GPT-5.1-CodexEstimate Complexity
gpt-5.1-codex logo
GPT-5.1-Codex

To estimate the total FLOPs (floating-point operations) required to train GPT-3, we can use a common approximation for transformer models:

Total FLOPs ≈ 6 × N<sub>params</sub> × N<sub>tokens</sub>

Where:

  • N<sub>params</sub> is the number of model parameters.
  • N<sub>tokens</sub> is the number of training tokens.
  • The factor of 6 accounts for forward and backward passes, along with other computations involved in training.

For GPT-3:

  • N<sub>params</sub> ≈ 175 billion = 1.75 × 10¹¹
  • N<sub>tokens</sub> ≈ 300 billion = 3.0 × 10¹¹

Plugging in:

6 × (1.75 × 10¹¹) × (3.0 × 10¹¹)
= 6 × 5.25 × 10²²
= 3.15 × 10²³ FLOPs

So the total estimated compute to train GPT-3 is ~3.15 × 10²³ FLOPs.

This is a rough but widely used approximation for large-scale transformer training.

Estimate Complexity

Turn this model response into notes, narration, or a short video

Auto NotesTranscriptNarrateVideo Cut

Partner link

This output is part of our open dataset — 5K+ AI responses across 200 models

About GPT-5.1-Codex

Capabilities

ConversationReasoningCode GenerationAnalysis

Categories

TextCodeMultimodal

Specifications

Provider
Openai
Released
2025-11-13
Size
XLARGE
Context
400,000 tokens

Keep exploring

SAME PROMPT

Claude Sonnet 4.6's version

Same prompt, different result

COMPARE

GPT-5.1-Codex vs Gemini 3.1 Pro Preview

Both outputs, side by side

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival