Skip to content
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
  1. Home
  2. Models
  3. Kimi Linear 48B A3B Instruct
  4. Estimate Complexity

See how Kimi Linear 48B A3B Instruct compares on this challenge:

  • Kimi Linear 48B A3B Instruct vs Claude Sonnet 4.6
  • Kimi Linear 48B A3B Instruct vs Gemini 3.1 Pro Preview
  • Kimi Linear 48B A3B Instruct vs Z.ai: GLM 5

4 models have responded to the "Estimate Complexity" challenge. Compare their approaches side-by-side on RIVAL. This response is part of RIVAL's open dataset of 5,600+ AI model responses.

Rival
Models
CompareBest ForArena
Sign Up
Sign Up
Back to Kimi Linear 48B A3B Instruct

Estimate Complexity

Kimi Linear 48B A3B Instruct's response to the 'Estimate Complexity' challenge.

Kimi Linear 48B A3B Instruct
November 10, 2025
Text

?
Prompt

Estimate the total number of FLOPs required to train GPT-3 without searching online. Explain your reasoning step by step.

Kimi Linear 48B A3B Instruct
Response

kimi-linear-48b-a3b-instruct logo
Kimi Linear 48B A3B InstructEstimate Complexity
kimi-linear-48b-a3b-instruct logo
Kimi Linear 48B A3B Instruct

Below is a back-of-the-envelope estimate of the total FLOPs needed to train GPT-3 “175 B” (the largest 96-layer, 12288-d model with 175 billion parameters) from scratch on the full 300 B-token corpus, assuming the standard transformer training setup used by OpenAI.

Step 1 – FLOPs per forward+backward pass
A single transformer block has

  • 2 matrix-multiply operations per attention layer (QKᵀ and OV)
  • 2 matrix-multiply operations per MLP (Wi and Wo)
  • 1 extra attention output projection (optional, but small)
  • 1 residual add per block

For 96 layers and 12288 hidden units, each matrix multiply is roughly
(12288²) ≈ 1.5 × 10⁸ FLOPs.
So per block: 2 attention + 2 MLP ≈ 8 × 1.5 × 10⁸ ≈ 1.2 × 10⁹ FLOPs.
Add residual adds and layer norms (~10 % overhead) ⇒ ≈ 1.3 × 10⁹ FLOPs per block.

With 96 blocks, forward+backward per token ≈ 1.25 × 10¹¹ FLOPs ≈ 125 GFLOPs.

Step 2 – Tokens processed per forward+backward step
The batch size is 3,200 sequences × 2,048 tokens = 6.55 million tokens.
Thus each SGD step consumes ≈ 6.6 × 10⁶ tokens.

Step 3 – Total SGD steps
300 billion tokens / 6.6 million tokens per step ≈ 45,500 steps.

Step 4 – Total FLOPs
45,500 steps × 125 GFLOPs/step ≈ 5.7 × 10¹² FLOPs ≈ 5.7 petaflop-days.

Step 5 – Overhead for data loading, optimizer states, and communication

  • Adam: 8 extra copies of the parameter matrix (2 × 4 bytes per float32) → +50 %
  • Gradient communication and padding → +20 %
  • Data loading and tokenization → +10 %

Overall multiply by 1.8 ⇒ ≈ 1.0 × 10¹³ FLOPs ≈ 10 petaflop-days.

Step 6 – Round to one significant figure
≈ 10¹³ FLOPs, i.e. ten petaflop-days.

So a rough estimate is on the order of 10¹³ total floating-point operations to train GPT-3 175 B from scratch on 300 B tokens with the standard transformer architecture and training setup.

Estimate Complexity

Turn this model response into notes, narration, or a short video

Auto NotesTranscriptNarrateVideo Cut

Partner link

This output is part of our open dataset — 5K+ AI responses across 200 models

About Kimi Linear 48B A3B Instruct

Capabilities

ConversationReasoningCode GenerationAnalysis

Categories

TextCodeMultimodal

Specifications

Provider
Moonshotai
Released
2025-11-10
Size
XLARGE
Context
1,048,576 tokens

Keep exploring

SAME PROMPT

Claude Sonnet 4.6's version

Same prompt, different result

COMPARE

Kimi Linear 48B A3B Instruct vs Gemini 3.1 Pro Preview

Both outputs, side by side

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival