Skip to content
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
  1. Home
  2. Models
  3. MiniMax M2
  4. Estimate Complexity

See how MiniMax M2 compares on this challenge:

  • MiniMax M2 vs Claude Sonnet 4.6
  • MiniMax M2 vs Gemini 3.1 Pro Preview
  • MiniMax M2 vs Z.ai: GLM 5

4 models have responded to the "Estimate Complexity" challenge. Compare their approaches side-by-side on RIVAL. This response is part of RIVAL's open dataset of 5,600+ AI model responses.

Rival
Models
CompareBest ForArena
Sign Up
Sign Up
Back to MiniMax M2

Estimate Complexity

Minimax M2 Free's response to the 'Estimate Complexity' challenge.

MiniMax M2
October 29, 2025
Text

?
Prompt

Estimate the total number of FLOPs required to train GPT-3 without searching online. Explain your reasoning step by step.

MiniMax M2
Response

minimax-m2-free logo
MiniMax M2Estimate Complexity
minimax-m2-free logo
MiniMax M2

To estimate the total FLOPs required to train GPT-3 (175B parameters) on 300 billion tokens (one epoch), we break down the process step by step:

Step 1: Understand GPT-3's Specifications

  • Parameters: 175 billion (175e9).
  • Training Tokens: 300 billion (300e9).
  • Context Length: 2048 tokens per sequence.
  • Training Epochs: 1 (as per the paper).

Step 2: FLOPs for Forward Pass

  • For a transformer model, the forward pass cost per token per parameter is approximately 2 FLOPs (one multiplication and one addition in matrix operations).
  • Total FLOPs for forward pass:
    [ \text{Total FLOPs}_{\text{forward}} = \text{Tokens} \times \text{Parameters} \times 2 ] [ = 300 \times 10^9 \times 175 \times 10^9 \times 2 = 1.05 \times 10^{23} \text{ FLOPs} ]

Step 3: FLOPs for Backward Pass

  • The backward pass (gradient computation) costs approximately 2× the forward pass due to additional operations (e.g., chain rule applications).
  • Total FLOPs for backward pass:
    [ \text{Total FLOPs}{\text{backward}} = 2 \times \text{Total FLOPs}{\text{forward}} = 2 \times 1.05 \times 10^{23} = 2.10 \times 10^{23} \text{ FLOPs} ]

Step 4: Quadratic Attention Overhead (Minor Correction)

  • Attention layers introduce quadratic cost in context length ((O(S^2)) per token, where (S = 2048)).
  • Overhead per token: ( \sim 4% ) of the linear cost (empirically for GPT-3).
  • Adjusted forward/backward FLOPs:
    [ \text{Total FLOPs}_{\text{linear}} = \text{Forward} + \text{Backward} = 1.05 \times 10^{23} + 2.10 \times 10^{23} = 3.15 \times 10^{23} \text{ FLOPs} ]
  • Attention overhead: (3.15 \times 10^{23} \times 0.04 = 1.26 \times 10^{22} \text{ FLOPs}).
  • Revised total:
    [ 3.15 \times 10^{23} + 1.26 \times 10^{22} \approx 3.28 \times 10^{23} \text{ FLOPs} ]

Step 5: Final Adjustment for Practical Efficiency

  • Training uses mixed precision (FP16) and optimizations (e.g., gradient accumulation), reducing effective FLOPs by ~10–20%.
  • Adjusted total:
    [ 3.28 \times 10^{23} \times 0.85 \approx 2.79 \times 10^{23} \text{ FLOPs} ] (Accounts for inefficiencies, data loading, etc.).

Conclusion

The estimated total FLOPs to train GPT-3 (175B) on 300B tokens is ~2.79 × 10²³ FLOPs.
This aligns with OpenAI's reported value of 3.14 × 10²³ FLOPs (accounting for minor rounding and approximation differences).

Key Assumptions:

  • 1 training epoch on 300B tokens.
  • Dominance of linear matrix multiplications (attention overhead <5%).
  • Mixed precision reduces cost by ~15%.
  • No hyperparameter tuning or intermediate checkpoints.

Final Answer:
[ \boxed{2.79 \times 10^{23}} ]
FLOPs (rounded to two significant figures, approximately 2.8 × 10²³).

Estimate Complexity

Turn this model response into notes, narration, or a short video

Auto NotesTranscriptNarrateVideo Cut

Partner link

This output is part of our open dataset — 5K+ AI responses across 200 models

About MiniMax M2

Capabilities

ConversationReasoningCode GenerationAnalysisPlanningAgentic Tool UseTool Use

Categories

TextCode

Specifications

Provider
Minimax
Released
2025-10-23
Size
MEDIUM
Context
204,800 tokens

Keep exploring

SAME PROMPT

Claude Sonnet 4.6's version

Same prompt, different result

COMPARE

MiniMax M2 vs Gemini 3.1 Pro Preview

Both outputs, side by side

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival