Skip to content
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
  1. Home
  2. Models
  3. Mistral Large
  4. Estimate Complexity

See how Mistral Large compares on this challenge:

  • Mistral Large vs Claude Sonnet 4.6
  • Mistral Large vs Gemini 3.1 Pro Preview
  • Mistral Large vs Z.ai: GLM 5

4 models have responded to the "Estimate Complexity" challenge. Compare their approaches side-by-side on RIVAL. This response is part of RIVAL's open dataset of 5,600+ AI model responses.

Rival
Models
CompareBest ForArena
Sign Up
Sign Up
Back to Mistral Large

Estimate Complexity

Mistral Large's response to the estimate complexity challenge.

Mistral Large
May 9, 2025
Text

?
Prompt

Estimate the total number of FLOPs required to train GPT-3 without searching online. Explain your reasoning step by step.

Mistral Large
Response

mistral-large logo
Mistral LargeEstimate Complexity
mistral-large logo
Mistral Large

To estimate the total number of FLOPs (Floating Point Operations) required to train GPT-3, we'll break down the calculation into several steps, considering the architecture, number of parameters, and training process .

  1. Model architecture and parameters: GPT-3 has 175 billion parameters. Most of these parameters are in the dense layers. For a rough estimate, we'll assume that the model has ( L ) layers, and each layer has a pproximately ( \frac{175 \times 10^9}{L} ) parameters.

  2. Forward pass: In a transformer model, the main computation happens in the multi-head self-attention a nd feed-forward networks. For a single token, the computation involves multiplying the input by weight matri ces. So, for one layer, the FLOPs required are approximately ( 2 \times N \times \frac{175 \times 10^9}{L} ), where ( N ) is the dimensionality of the embeddings (typically around 12,288 for GPT-3) and the factor 2 comes from the multiplication and addition in a matrix-vector product.

  3. Backward pass: Training involves both a forward pass and a backward pass. The backward pass has rough ly twice the computational cost of the forward pass due to the need to compute gradients and perform backpro pagation. So, the total FLOPs for one layer and one token during training are approximately ( 6 \times N \t imes \frac{175 \times 10^9}{L} ).

  4. Sequence length and batch size: GPT-3 uses a context window of 2,048 tokens, and let's assume a batch size of ( B ). The computation for each token depends on all previous tokens in the sequence, so the effe ctive number of tokens is ( 2048^2 ) for each batch item. Thus, the total FLOPs for one layer and one batc h are ( 6 \times N \times \frac{175 \times 10^9}{L} \times 2048^2 \times B ).

  5. Total layers and training steps: Now, we multiply by the number of layers ( L ) and the total numbe r of training steps ( S ). Assuming ( L = 96 ) (as mentioned in the GPT-3 paper) and ( S = 300,000 ) ( a rough estimate based on typical training durations), we get:

    Total FLOPs = ( 6 \times N \times 175 \times 10^9 \times 2048^2 \times B \times L \times S )

  6. Putting it all together: Plugging in the values ( N = 12,288 ), ( B = 512 ) (a reasonable batch s ize), ( L = 96 ), and ( S = 300,000 ), we get:

    Total FLOPs ≈ ( 6 \times 12,288 \times 175 \times 10^9 \times 2048^2 \times 512 \times 96 \times 300,000 )

    This works out to approximately ( 3.6 \times 10^{26} ) FLOPs.

So, our rough estimate is that training GPT-3 requires around ( 3.6 \times 10^{26} ) FLOPs. This is a very rough estimate, as the exact number depends on the specific details of the architecture, implementation, an d training process.

Estimate Complexity

Turn this model response into notes, narration, or a short video

Auto NotesTranscriptNarrateVideo Cut

Partner link

This output is part of our open dataset — 5K+ AI responses across 200 models

About Mistral Large

Capabilities

ConversationReasoningCode Generation

Categories

TextMultimodal

Specifications

Provider
Mistral
Released
2024-02-26
Size
LARGE
Parameters
Not disclosed
Context
32,000 tokens

Keep exploring

SAME PROMPT

Claude Sonnet 4.6's version

Same prompt, different result

COMPARE

Mistral Large vs Gemini 3.1 Pro Preview

Both outputs, side by side

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival