Skip to content
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
  1. Home
  2. Models
  3. OpenAI o3
  4. Estimate Complexity

See how OpenAI o3 compares on this challenge:

  • OpenAI o3 vs Claude Sonnet 4.6
  • OpenAI o3 vs Gemini 3.1 Pro Preview
  • OpenAI o3 vs Z.ai: GLM 5

4 models have responded to the "Estimate Complexity" challenge. Compare their approaches side-by-side on RIVAL. This response is part of RIVAL's open dataset of 5,600+ AI model responses.

Rival
Models
CompareBest ForArena
Sign Up
Sign Up
Back to OpenAI o3

Estimate Complexity

o3's response to the challenge...

OpenAI o3
April 16, 2025
Text

?
Prompt

Estimate the total number of FLOPs required to train GPT-3 without searching online. Explain your reasoning step by step.

OpenAI o3
Response

o3 logo
OpenAI o3Estimate Complexity
o3 logo
OpenAI o3

Below is a simple "back-of-the-envelope" estimate that uses only a few public facts about GPT-3 and very generic rules of thumb for counting operations.

Step 1. Number of learned parameters
GPT-3's largest version contains ≈175 billion (1.75 × 10¹¹) trainable parameters.

Step 2. How much data was seen during training
OpenAI reports that the model was trained on about 300 billion tokens (3 × 10¹¹).

Step 3. How many floating-point operations does one parameter cost per token?
A practical rule of thumb for Transformer language models is
 Training FLOPs ≈ 6 × (# parameters) × (# training tokens)

Where does the factor 6 come from?

• Forward pass: every parameter is involved in one multiply-accumulate → 2 FLOPs
• Back-prop gradient computation: roughly another 2 FLOPs
• Parameter-update (optimizer) and miscellaneous overhead: ≈2 FLOPs
Total ≈6 FLOPs per parameter per token.

Step 4. Plug in the numbers
Total FLOPs = 6 × (1.75 × 10¹¹) × (3 × 10¹¹)
      = 6 × 5.25 × 10²²
      ≈ 3.15 × 10²³ FLOPs.

Step 5. Express the answer in more familiar units
3.15 × 10²³ ≈ 315 zettaFLOPs (1 ZFLOP = 10²¹ FLOPs).

Step 6. Sanity check with hardware-time intuition
An NVIDIA A100 delivers ≈ 312 teraFLOP/s (0.312 PFLOP/s) in mixed precision.
Wall-clock time on a single A100:
 3.15 × 10²³ / 3.12 × 10¹⁴ ≈ 1.0 × 10⁹ s ≈ 32 years.
Running on 1,000 A100s in parallel would take ≈12 days, which is the right ballpark for a large industrial training run.

Final estimate
Training GPT-3 (175 B parameters, 300 B tokens) requires on the order of 3 × 10²³ floating-point operations, i.e. roughly 300 zettaFLOPs.

Estimate Complexity

Turn this model response into notes, narration, or a short video

Auto NotesTranscriptNarrateVideo Cut

Partner link

This output is part of our open dataset — 5K+ AI responses across 200 models

About OpenAI o3

Capabilities

ConversationReasoningCode GenerationAnalysisImage Generation

Categories

TextCodeImageMultimodal

Specifications

Provider
Openai
Released
2025-04-16
Size
XLARGE
Parameters
Not disclosed

Keep exploring

SAME PROMPT

Claude Sonnet 4.6's version

Same prompt, different result

COMPARE

OpenAI o3 vs Gemini 3.1 Pro Preview

Both outputs, side by side

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival