Skip to content
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
  1. Home
  2. Models
  3. PaLM 2 Chat
  4. Estimate Complexity

See how PaLM 2 Chat compares on this challenge:

  • PaLM 2 Chat vs Claude Sonnet 4.6
  • PaLM 2 Chat vs Gemini 3.1 Pro Preview
  • PaLM 2 Chat vs Z.ai: GLM 5

4 models have responded to the "Estimate Complexity" challenge. Compare their approaches side-by-side on RIVAL. This response is part of RIVAL's open dataset of 5,600+ AI model responses.

Rival
Models
CompareBest ForArena
Sign Up
Sign Up
Back to PaLM 2 Chat

Estimate Complexity

PaLM 2 Chat (Bison)'s response to the challenge: Tests an AI's ability to make educated estimates based on technical knowledge

PaLM 2 Chat
April 20, 2025
Text

?
Prompt

Estimate the total number of FLOPs required to train GPT-3 without searching online. Explain your reasoning step by step.

PaLM 2 Chat
Response

palm-2-chat-bison logo
PaLM 2 ChatEstimate Complexity
palm-2-chat-bison logo
PaLM 2 Chat

To estimate the total number of FLOPs required to train GPT-3 without searching online, we can make several assumptions and perform calculations based on the information available about GPT-3's architecture and training process. Here's a step-by-step explanation of the reasoning:
Step 1: Determine the number of parameters in GPT-3

GPT-3 is a massive language model with 175 billion parameters. Each parameter represents a trainable weight in the neural network, and updating these weights during training requires floating-point operations (FLOPs).

Step 2: Estimate the number of training iterations

The number of training iterations refers to how many times the entire training dataset is passed through the neural network during the training process. Although the exact number may vary, let's assume that GPT-3 was trained for 100 epochs.

Step 3: Calculate the FLOPs per iteration

During each training iteration, the neural network performs forward and backward passes. The forward pass involves computing the output of the network given the input, while the backward pass involves calculating the gradients of the loss function with respect to the network's weights.
For simplicity, we can assume that the forward and backward passes have roughly the same number of FLOPs. Therefore, the total FLOPs per iteration can be estimated by multiplying the number of parameters by 2 (forward and backward passes).

Total FLOPs per iteration = (Number of parameters) x 2

(175 billion parameters) x 2 = 350 billion FLOPs per iteration

Step 4: Calculate the total FLOPs for training

Multiplying the FLOPs per iteration by the number of training iterations gives us the total FLOPs required to train GPT-3.

Total FLOPs for training = (FLOPs per iteration) x (Number of iterations)

(350 billion FLOPs per iteration) x (100 iterations) = 35 trillion FLOPs for training

Therefore, based on these assumptions, we estimate that training GPT-3 without searching online would require approximately 35 trillion FLOPs.

Estimate Complexity

Turn this model response into notes, narration, or a short video

Auto NotesTranscriptNarrateVideo Cut

Partner link

This output is part of our open dataset — 5K+ AI responses across 200 models

About PaLM 2 Chat

Capabilities

ConversationReasoningCode Generation

Categories

TextCode

Specifications

Provider
Google
Released
2023-07-20
Size
LARGE
Parameters
340B
Context
8,192 tokens

Keep exploring

SAME PROMPT

Claude Sonnet 4.6's version

Same prompt, different result

COMPARE

PaLM 2 Chat vs Gemini 3.1 Pro Preview

Both outputs, side by side

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival