Skip to content
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
  1. Home
  2. Models
  3. Aurora Alpha
  4. Estimate Complexity

See how Aurora Alpha compares on this challenge:

  • Aurora Alpha vs Claude Sonnet 4.6
  • Aurora Alpha vs Gemini 3.1 Pro Preview
  • Aurora Alpha vs Z.ai: GLM 5

4 models have responded to the "Estimate Complexity" challenge. Compare their approaches side-by-side on RIVAL. This response is part of RIVAL's open dataset of 5,600+ AI model responses.

Rival
Models
CompareBest ForArena
Sign Up
Sign Up
Back to Aurora Alpha

Estimate Complexity

Aurora Alpha's response to the 'Estimate Complexity' challenge.

Aurora Alpha
February 9, 2026
Text

?
Prompt

Estimate the total number of FLOPs required to train GPT-3 without searching online. Explain your reasoning step by step.

Aurora Alpha
Response

aurora-alpha logo
Aurora AlphaEstimate Complexity
aurora-alpha logo
Aurora Alpha

Step‑by‑step back‑of‑the‑envelope estimate

Below is a simple calculation that uses only publicly‑known high‑level facts about GPT‑3 (size of the model, length of the training data, and the basic arithmetic cost of a Transformer layer).
All numbers are rounded to make the math easy to follow; the goal is to get an order‑of‑magnitude figure rather than an exact count.


1. What we know about GPT‑3

PropertyApproximate value
Number of parameters (the “175 B” model)1.75 × 10¹¹
Hidden dimension d (the size of each token representation)≈ 12 288
Number of Transformer layers L96
Feed‑forward inner dimension dff* (usually 4 × d)≈ 49 152
Size of the training corpus (tokens)≈ 3 × 10¹¹ tokens (≈ 300 B)
Training uses Adam‑style optimizer, mixed‑precision, etc. – we ignore those details for the FLOP count.

These numbers are taken from the model card and the paper; they are the only “hard” data we need.


2. FLOPs per token for a single Transformer layer

A standard Transformer layer consists of two main sub‑blocks:

Sub‑blockMain operations (per token)Approx. FLOPs
Self‑attention (Q, K, V projections + attention scores + weighted sum)3 × d × d (proj) + d × d (QK) + d × d (AV)≈ 5 × d²
Feed‑forward (two linear layers, activation in between)d × d _ff + d × d × 4 (first linear) + 4 × d × d (second linear)≈ 8 × d²

Summing them gives roughly

[ \text{FLOPs per token per layer} ;\approx; (5+8),d^{2}=13,d^{2}. ]

Why the factor 13?

  • The three projection matrices (Q, K, V) each cost d × d → 3 d².
  • Computing the attention scores (QKᵀ) costs d × d.
  • Multiplying the scores by V costs another d × d.
  • The two feed‑forward linear layers each cost 4 d² (because the inner dimension is 4 × d), giving 8 d² total.

3. Plug in the hidden dimension

[ d = 12,288 \quad\Rightarrow\quad d^{2} \approx 1.51\times10^{8}. ]

[ 13,d^{2} \approx 13 \times 1.51\times10^{8} \approx 1.96\times10^{9};\text{FLOPs per token per layer}. ]


4. Include all layers

[ \text{FLOPs per token (forward pass)} = L \times 13,d^{2} \approx 96 \times 1.96\times10^{9} \approx 1.88\times10^{11}. ]

So a single forward pass of one token through the full 96‑layer model costs ≈ 2 × 10¹¹ FLOPs.


5. Account for the whole training corpus

[ \text{Tokens processed} = 3\times10^{11}. ]

[ \text{Forward FLOPs total} = 3\times10^{11} \times 1.88\times10^{11} \approx 5.6\times10^{22}. ]


6. Add the backward pass

During training we must compute gradients. A common rule of thumb is that the backward pass costs about 2 × the forward pass, so the total compute (forward + backward) is roughly 3 × the forward cost.

[ \text{Total training FLOPs} \approx 3 \times 5.6\times10^{22} \approx 1.7\times10^{23}. ]


7. Result (order‑of‑magnitude)

[ \boxed{\text{≈ 10^{23}\ \text{FLOPs (a few × 10^{23})}} ]

In words: training the 175‑billion‑parameter GPT‑3 model required on the order of a hundred sextillion floating‑point operations.

This figure is consistent with the “exascale” compute budgets that have been reported for the largest language‑model training runs.


8. Sources of uncertainty

Source of errorEffect on the estimate
Exact token count (the corpus size is reported as 300 B but the actual number of training steps may be slightly higher)± 10 %
The factor 13 for FLOPs per layer is a simplification (real implementations have extra ops for layer‑norm, bias terms, dropout, etc.)+ ~ 20 %
Mixed‑precision training reduces FLOPs for some operations, but the count above assumes full‑precision arithmetic– ~ 10 %
Over‑head from optimizer state updates, gradient accumulation, checkpointing, etc.+ ~ 10 %

Even allowing for these variations, the estimate stays within 10²³ – 10²⁴ FLOPs, i.e. a few hundred exa‑FLOPs.


Bottom line: Using only the model’s size, the number of layers, and the token count, a straightforward arithmetic model yields a total training compute on the order of 10²³ floating‑point operations for GPT‑3. This is the magnitude of compute that modern “large‑scale” language models demand.

Estimate Complexity

Turn this model response into notes, narration, or a short video

Auto NotesTranscriptNarrateVideo Cut

Partner link

This output is part of our open dataset — 5K+ AI responses across 200 models

About Aurora Alpha

Capabilities

ConversationReasoningCode GenerationAnalysisAgentic Tool Use

Categories

TextCode

Specifications

Provider
Openrouter
Released
2026-02-09
Size
LARGE
Context
128,000 tokens

Keep exploring

SAME PROMPT

Claude Sonnet 4.6's version

Same prompt, different result

COMPARE

Aurora Alpha vs Gemini 3.1 Pro Preview

Both outputs, side by side

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival