Skip to content
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
  1. Home
  2. Models
  3. Claude Sonnet 4.5
  4. Debug This Architecture

See how Claude Sonnet 4.5 compares on this challenge:

  • Claude Sonnet 4.5 vs Claude Sonnet 4.6
  • Claude Sonnet 4.5 vs Gemini 3.1 Pro Preview
  • Claude Sonnet 4.5 vs Z.ai: GLM 5

4 models have responded to the "Debug This Architecture" challenge. Compare their approaches side-by-side on RIVAL. This response is part of RIVAL's open dataset of 5,600+ AI model responses.

Rival
Models
CompareBest ForArena
Sign Up
Sign Up
Back to Claude Sonnet 4.5

Debug This Architecture

Claude 4 5 Sonnet's response to the 'Debug This Architecture' challenge.

Claude Sonnet 4.5
February 3, 2026
Text

?
Prompt

Here's the architecture for a real-time collaborative document editor (like Google Docs): **System Overview:** - Frontend: React SPA with WebSocket connections - Backend: Node.js API servers behind a load balancer (round-robin) - Database: PostgreSQL for document storage, Redis for session cache - Real-time: Each API server maintains its own WebSocket connections to clients - Sync Strategy: Last-write-wins with timestamps from client clocks - Storage: Documents saved as full HTML snapshots every 30 seconds - Auth: JWT tokens with 24-hour expiry, stored in localStorage - CDN: CloudFront for static assets, also caches API responses for 5 minutes **Data Flow:** 1. User types → change event sent via WebSocket to their connected server 2. Server writes change to PostgreSQL 3. Server broadcasts change to all WebSocket clients connected to THAT server 4. Other servers poll PostgreSQL every 2 seconds for changes 5. Conflict resolution: if two users edit the same paragraph, last timestamp wins **Scaling Plan:** - Horizontal scaling by adding more API servers - Database read replicas for read-heavy operations - Document partitioning by organization ID Identify all potential failure modes, race conditions, and scaling bottlenecks in this architecture. For each issue found, propose a specific solution with trade-offs.

Claude Sonnet 4.5
Response

claude-4.5-sonnet logo
Claude Sonnet 4.5Debug This Architecture
claude-4.5-sonnet logo
Claude Sonnet 4.5

Critical Issues Analysis

🔴 CRITICAL: Data Loss & Consistency Issues

1. Client Clock-Based Timestamps (SEVERE)

Problem:

  • Client clocks can be wrong, manipulated, or skewed
  • User with clock set to future will always "win" conflicts
  • No guaranteed ordering of operations

Failure Scenarios:

User A (clock: 2024-01-01 10:00:00) types "Hello"
User B (clock: 2024-01-01 09:59:59) types "World"
Result: "Hello" wins even though "World" was actually typed later

Solutions:

ApproachProsCons
Server-assigned Lamport clocksLogical ordering, no clock sync neededRequires coordination
Hybrid logical clocks (HLC)Combines wall-clock + logical counterMore complex implementation
Operational Transform (OT)Industry standard, handles intentComplex to implement correctly
CRDT (Conflict-free Replicated Data Types)Mathematically guaranteed convergenceMemory overhead, learning curve

Recommended: Implement CRDT (Yjs or Automerge library)

  • Trade-off: 2-3x memory overhead vs guaranteed consistency
  • Eliminates need for conflict resolution entirely

2. WebSocket Partitioning (CRITICAL)

Problem:

  • Users on different servers don't receive real-time updates
  • 2-second polling creates massive delays and inconsistency
  • Race conditions between WebSocket broadcasts and polling

Failure Scenario:

Time 0s: User A (Server 1) types "A"
Time 0.5s: User B (Server 2) types "B" 
Time 2s: Server 2 polls, gets "A", broadcasts to User B
Time 2.5s: User C (Server 1) sees "AB", User D (Server 2) sees "BA"

Solutions:

ApproachLatencyComplexityCost
Redis Pub/Sub<50msLow$
RabbitMQ/Kafka<100msMedium$$
Dedicated WebSocket service (Socket.io with Redis adapter)<30msLow$

Recommended: Redis Pub/Sub with sticky sessions

// On any server receiving a change
redis.publish('document:${docId}', JSON.stringify(change));

// All servers subscribe
redis.subscribe('document:*', (channel, message) => {
  const docId = channel.split(':')[1];
  broadcastToLocalClients(docId, JSON.parse(message));
});
  • Trade-off: Redis becomes single point of failure (mitigate with Redis Sentinel/Cluster)

3. Full HTML Snapshots (DATA LOSS RISK)

Problem:

  • 30-second window for data loss if server crashes
  • No audit trail or version history
  • Cannot undo/replay operations
  • HTML storage is inefficient and risky (XSS, formatting loss)

Solutions:

ApproachStorageRecoveryHistory
Event sourcing10x moreCompleteFull
Operational log + snapshots3x moreGoodConfigurable
Differential snapshots2x moreGoodLimited

Recommended: Event Sourcing with Periodic Snapshots

-- Operations table
CREATE TABLE operations (
  id BIGSERIAL PRIMARY KEY,
  document_id UUID,
  user_id UUID,
  operation JSONB,  -- CRDT operation
  server_timestamp TIMESTAMPTZ DEFAULT NOW(),
  lamport_clock BIGINT
);

-- Snapshots table (every 100 operations)
CREATE TABLE snapshots (
  document_id UUID,
  version BIGINT,
  content JSONB,
  created_at TIMESTAMPTZ
);
  • Trade-off: 3-5x storage increase vs complete audit trail and zero data loss

🟠 SEVERE: Race Conditions

4. Concurrent Paragraph Edits

Problem:

  • "Last write wins" on paragraph level causes character-level data loss
  • No operational transformation

Example:

Initial: "The cat"
User A: "The black cat" (inserts "black ")
User B: "The fat cat" (inserts "fat ")
Last-write-wins result: "The fat cat" (User A's work lost)
Correct result: "The black fat cat" or "The fat black cat"

Solution: Use character-level CRDT (Yjs RichText type)

import * as Y from 'yjs';

const ydoc = new Y.Doc();
const ytext = ydoc.getText('content');

// Automatically handles concurrent inserts
ytext.insert(4, 'black ');  // User A
ytext.insert(4, 'fat ');    // User B
// Result preserves both edits with deterministic ordering

5. Database Write Conflicts

Problem:

  • Multiple servers writing to same document simultaneously
  • PostgreSQL row-level locking causes deadlocks
  • No transaction coordination

Solution: Optimistic locking with version numbers

CREATE TABLE documents (
  id UUID PRIMARY KEY,
  version BIGINT NOT NULL,
  content JSONB,
  updated_at TIMESTAMPTZ
);

-- Update with version check
UPDATE documents 
SET content = $1, version = version + 1, updated_at = NOW()
WHERE id = $2 AND version = $3
RETURNING version;

-- If no rows updated, version conflict occurred

🟡 MAJOR: Scaling Bottlenecks

6. PostgreSQL Write Bottleneck

Problem:

  • Every keystroke = database write
  • PostgreSQL limited to ~10k writes/sec on single node
  • Read replicas don't help write-heavy workload

Calculation:

100 concurrent users × 60 keystrokes/min = 100 writes/sec ✓
1,000 concurrent users = 1,000 writes/sec ✓
10,000 concurrent users = 10,000 writes/sec (at limit) ⚠️
100,000 concurrent users = 100,000 writes/sec ✗

Solutions:

ApproachThroughputConsistencyComplexity
Write-through cache (Redis)100k+ ops/secEventualLow
Batch operations50k+ ops/secStrongMedium
Sharded PostgreSQL (Citus)500k+ ops/secStrongHigh

Recommended: Redis Write-Through Cache + Async Persistence

// Write to Redis immediately (fast)
await redis.zadd(`ops:${docId}`, timestamp, JSON.stringify(op));

// Async worker drains to PostgreSQL in batches
setInterval(async () => {
  const ops = await redis.zrange(`ops:${docId}`, 0, 99);
  await pg.query('INSERT INTO operations VALUES ...', ops);
  await redis.zrem(`ops:${docId}`, ...ops);
}, 1000);
  • Trade-off: 1-second window of data in Redis only (mitigate with Redis persistence)

7. 2-Second Polling (MASSIVE WASTE)

Problem:

  • N servers × M documents × 0.5 queries/sec = database overload
  • 2-second latency unacceptable for real-time

Calculation:

10 servers × 1,000 active docs × 0.5 qps = 5,000 queries/sec
Just for polling! Actual useful work is extra.

Solution: Already covered in #2 (Redis Pub/Sub)


8. CDN Caching API Responses (DANGEROUS)

Problem:

  • 5-minute cache on collaborative document API = stale data
  • Users see outdated content
  • Cache invalidation nightmare

Solution: Never cache document content

Cache-Control: no-store, must-revalidate  // Document endpoints
Cache-Control: public, max-age=31536000   // Static assets only

🔵 IMPORTANT: Security & Reliability

9. JWT in localStorage (XSS VULNERABILITY)

Problem:

  • XSS attack steals token → full account compromise for 24 hours
  • No way to revoke token

Solution: HttpOnly cookies + short-lived tokens + refresh tokens

// Access token: 15 minutes, HttpOnly cookie
res.cookie('accessToken', jwt.sign({...}, secret, {expiresIn: '15m'}), {
  httpOnly: true,
  secure: true,
  sameSite: 'strict'
});

// Refresh token: 7 days, stored in Redis for revocation
const refreshToken = crypto.randomBytes(32).toString('hex');
await redis.setex(`refresh:${userId}`, 7*24*60*60, refreshToken);

10. No WebSocket Authentication After Initial Connect

Problem:

  • JWT expires after 24 hours but WebSocket stays open
  • No re-authentication mechanism

Solution: Periodic token refresh over WebSocket

// Client
setInterval(() => {
  ws.send({type: 'REFRESH_TOKEN', token: getNewToken()});
}, 14 * 60 * 1000); // Every 14 minutes

// Server validates and updates connection auth

11. Single Point of Failure: PostgreSQL

Problem:

  • Database down = entire system down
  • No automatic failover mentioned

Solution: PostgreSQL with Patroni + HAProxy

┌─────────┐
│ HAProxy │ (virtual IP)
└────┬────┘
     ├──► [Primary] PostgreSQL + Patroni
     ├──► [Standby] PostgreSQL + Patroni  
     └──► [Standby] PostgreSQL + Patroni
  • Automatic failover in <30 seconds
  • Trade-off: 3x infrastructure cost

12. No Rate Limiting

Problem:

  • Malicious user can spam operations
  • DoS attack via WebSocket flooding

Solution: Token bucket rate limiter

const rateLimiter = new Map();

function checkRateLimit(userId) {
  const limit = rateLimiter.get(userId) || {tokens: 100, lastRefill: Date.now()};
  
  // Refill tokens (10 per second)
  const now = Date.now();
  const tokensToAdd = Math.floor((now - limit.lastRefill) / 100);
  limit.tokens = Math.min(100, limit.tokens + tokensToAdd);
  limit.lastRefill = now;
  
  if (limit.tokens < 1) return false;
  limit.tokens--;
  rateLimiter.set(userId, limit);
  return true;
}

📊 Revised Architecture

┌─────────────┐
│   Clients   │
└──────┬──────┘
       │ WSS (CRDT operations)
       ▼
┌──────────────────────────────┐
│  Load Balancer (Sticky)      │
└──────┬───────────────────────┘
       │
   ┌───┴────┬────────┬────────┐
   ▼        ▼        ▼        ▼
┌─────┐  ┌─────┐  ┌─────┐  ┌─────┐
│Node1│  │Node2│  │Node3│  │Node4│
└──┬──┘  └──┬──┘  └──┬──┘  └──┬──┘
   │        │        │        │
   └────────┴────────┴────────┘
            │
     ┌──────┴──────┐
     ▼             ▼
┌─────────┐   ┌──────────────┐
│  Redis  │   │  PostgreSQL  │
│ Pub/Sub │   │   + Patroni  │
│ + Cache │   │  (HA Cluster)│
└─────────┘   └──────────────┘

Key Changes:

  1. CRDT-based operations (Yjs)
  2. Redis Pub/Sub for real-time sync
  3. Event sourcing with snapshots
  4. Sticky sessions on load balancer
  5. Redis write-through cache
  6. PostgreSQL HA with Patroni
  7. HttpOnly cookies for auth
  8. No CDN caching of API responses

Performance Targets:

  • Latency: <50ms for operations
  • Throughput: 100k+ concurrent users
  • Data loss: Zero (event sourcing)
  • Availability: 99.95% (HA database)
Debug This Architecture

Turn this model response into notes, narration, or a short video

Auto NotesTranscriptNarrateVideo Cut

Partner link

This output is part of our open dataset — 5K+ AI responses across 200 models

About Claude Sonnet 4.5

Capabilities

ConversationReasoningCode GenerationAnalysisAgentic Tool Use

Categories

TextCode

Specifications

Provider
Anthropic
Released
2025-09-29
Size
LARGE
Context
200,000 tokens

Keep exploring

SAME PROMPT

Claude Sonnet 4.6's version

Same prompt, different result

COMPARE

Claude Sonnet 4.5 vs Gemini 3.1 Pro Preview

Both outputs, side by side

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival