4 models have responded to the "Debug This Architecture" challenge. Compare their approaches side-by-side on RIVAL. This response is part of RIVAL's open dataset of 5,600+ AI model responses.
Claude 4 5 Sonnet's response to the 'Debug This Architecture' challenge.
Here's the architecture for a real-time collaborative document editor (like Google Docs): **System Overview:** - Frontend: React SPA with WebSocket connections - Backend: Node.js API servers behind a load balancer (round-robin) - Database: PostgreSQL for document storage, Redis for session cache - Real-time: Each API server maintains its own WebSocket connections to clients - Sync Strategy: Last-write-wins with timestamps from client clocks - Storage: Documents saved as full HTML snapshots every 30 seconds - Auth: JWT tokens with 24-hour expiry, stored in localStorage - CDN: CloudFront for static assets, also caches API responses for 5 minutes **Data Flow:** 1. User types → change event sent via WebSocket to their connected server 2. Server writes change to PostgreSQL 3. Server broadcasts change to all WebSocket clients connected to THAT server 4. Other servers poll PostgreSQL every 2 seconds for changes 5. Conflict resolution: if two users edit the same paragraph, last timestamp wins **Scaling Plan:** - Horizontal scaling by adding more API servers - Database read replicas for read-heavy operations - Document partitioning by organization ID Identify all potential failure modes, race conditions, and scaling bottlenecks in this architecture. For each issue found, propose a specific solution with trade-offs.
Problem:
Failure Scenarios:
User A (clock: 2024-01-01 10:00:00) types "Hello"
User B (clock: 2024-01-01 09:59:59) types "World"
Result: "Hello" wins even though "World" was actually typed later
Solutions:
| Approach | Pros | Cons |
|---|---|---|
| Server-assigned Lamport clocks | Logical ordering, no clock sync needed | Requires coordination |
| Hybrid logical clocks (HLC) | Combines wall-clock + logical counter | More complex implementation |
| Operational Transform (OT) | Industry standard, handles intent | Complex to implement correctly |
| CRDT (Conflict-free Replicated Data Types) | Mathematically guaranteed convergence | Memory overhead, learning curve |
Recommended: Implement CRDT (Yjs or Automerge library)
Problem:
Failure Scenario:
Time 0s: User A (Server 1) types "A"
Time 0.5s: User B (Server 2) types "B"
Time 2s: Server 2 polls, gets "A", broadcasts to User B
Time 2.5s: User C (Server 1) sees "AB", User D (Server 2) sees "BA"
Solutions:
| Approach | Latency | Complexity | Cost |
|---|---|---|---|
| Redis Pub/Sub | <50ms | Low | $ |
| RabbitMQ/Kafka | <100ms | Medium | $$ |
| Dedicated WebSocket service (Socket.io with Redis adapter) | <30ms | Low | $ |
Recommended: Redis Pub/Sub with sticky sessions
// On any server receiving a change
redis.publish('document:${docId}', JSON.stringify(change));
// All servers subscribe
redis.subscribe('document:*', (channel, message) => {
const docId = channel.split(':')[1];
broadcastToLocalClients(docId, JSON.parse(message));
});
Problem:
Solutions:
| Approach | Storage | Recovery | History |
|---|---|---|---|
| Event sourcing | 10x more | Complete | Full |
| Operational log + snapshots | 3x more | Good | Configurable |
| Differential snapshots | 2x more | Good | Limited |
Recommended: Event Sourcing with Periodic Snapshots
-- Operations table
CREATE TABLE operations (
id BIGSERIAL PRIMARY KEY,
document_id UUID,
user_id UUID,
operation JSONB, -- CRDT operation
server_timestamp TIMESTAMPTZ DEFAULT NOW(),
lamport_clock BIGINT
);
-- Snapshots table (every 100 operations)
CREATE TABLE snapshots (
document_id UUID,
version BIGINT,
content JSONB,
created_at TIMESTAMPTZ
);
Problem:
Example:
Initial: "The cat"
User A: "The black cat" (inserts "black ")
User B: "The fat cat" (inserts "fat ")
Last-write-wins result: "The fat cat" (User A's work lost)
Correct result: "The black fat cat" or "The fat black cat"
Solution: Use character-level CRDT (Yjs RichText type)
import * as Y from 'yjs';
const ydoc = new Y.Doc();
const ytext = ydoc.getText('content');
// Automatically handles concurrent inserts
ytext.insert(4, 'black '); // User A
ytext.insert(4, 'fat '); // User B
// Result preserves both edits with deterministic ordering
Problem:
Solution: Optimistic locking with version numbers
CREATE TABLE documents (
id UUID PRIMARY KEY,
version BIGINT NOT NULL,
content JSONB,
updated_at TIMESTAMPTZ
);
-- Update with version check
UPDATE documents
SET content = $1, version = version + 1, updated_at = NOW()
WHERE id = $2 AND version = $3
RETURNING version;
-- If no rows updated, version conflict occurred
Problem:
Calculation:
100 concurrent users × 60 keystrokes/min = 100 writes/sec ✓
1,000 concurrent users = 1,000 writes/sec ✓
10,000 concurrent users = 10,000 writes/sec (at limit) ⚠️
100,000 concurrent users = 100,000 writes/sec ✗
Solutions:
| Approach | Throughput | Consistency | Complexity |
|---|---|---|---|
| Write-through cache (Redis) | 100k+ ops/sec | Eventual | Low |
| Batch operations | 50k+ ops/sec | Strong | Medium |
| Sharded PostgreSQL (Citus) | 500k+ ops/sec | Strong | High |
Recommended: Redis Write-Through Cache + Async Persistence
// Write to Redis immediately (fast)
await redis.zadd(`ops:${docId}`, timestamp, JSON.stringify(op));
// Async worker drains to PostgreSQL in batches
setInterval(async () => {
const ops = await redis.zrange(`ops:${docId}`, 0, 99);
await pg.query('INSERT INTO operations VALUES ...', ops);
await redis.zrem(`ops:${docId}`, ...ops);
}, 1000);
Problem:
Calculation:
10 servers × 1,000 active docs × 0.5 qps = 5,000 queries/sec
Just for polling! Actual useful work is extra.
Solution: Already covered in #2 (Redis Pub/Sub)
Problem:
Solution: Never cache document content
Cache-Control: no-store, must-revalidate // Document endpoints
Cache-Control: public, max-age=31536000 // Static assets only
Problem:
Solution: HttpOnly cookies + short-lived tokens + refresh tokens
// Access token: 15 minutes, HttpOnly cookie
res.cookie('accessToken', jwt.sign({...}, secret, {expiresIn: '15m'}), {
httpOnly: true,
secure: true,
sameSite: 'strict'
});
// Refresh token: 7 days, stored in Redis for revocation
const refreshToken = crypto.randomBytes(32).toString('hex');
await redis.setex(`refresh:${userId}`, 7*24*60*60, refreshToken);
Problem:
Solution: Periodic token refresh over WebSocket
// Client
setInterval(() => {
ws.send({type: 'REFRESH_TOKEN', token: getNewToken()});
}, 14 * 60 * 1000); // Every 14 minutes
// Server validates and updates connection auth
Problem:
Solution: PostgreSQL with Patroni + HAProxy
┌─────────┐
│ HAProxy │ (virtual IP)
└────┬────┘
├──► [Primary] PostgreSQL + Patroni
├──► [Standby] PostgreSQL + Patroni
└──► [Standby] PostgreSQL + Patroni
Problem:
Solution: Token bucket rate limiter
const rateLimiter = new Map();
function checkRateLimit(userId) {
const limit = rateLimiter.get(userId) || {tokens: 100, lastRefill: Date.now()};
// Refill tokens (10 per second)
const now = Date.now();
const tokensToAdd = Math.floor((now - limit.lastRefill) / 100);
limit.tokens = Math.min(100, limit.tokens + tokensToAdd);
limit.lastRefill = now;
if (limit.tokens < 1) return false;
limit.tokens--;
rateLimiter.set(userId, limit);
return true;
}
┌─────────────┐
│ Clients │
└──────┬──────┘
│ WSS (CRDT operations)
▼
┌──────────────────────────────┐
│ Load Balancer (Sticky) │
└──────┬───────────────────────┘
│
┌───┴────┬────────┬────────┐
▼ ▼ ▼ ▼
┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐
│Node1│ │Node2│ │Node3│ │Node4│
└──┬──┘ └──┬──┘ └──┬──┘ └──┬──┘
│ │ │ │
└────────┴────────┴────────┘
│
┌──────┴──────┐
▼ ▼
┌─────────┐ ┌──────────────┐
│ Redis │ │ PostgreSQL │
│ Pub/Sub │ │ + Patroni │
│ + Cache │ │ (HA Cluster)│
└─────────┘ └──────────────┘
Key Changes:
Performance Targets:
Turn this model response into notes, narration, or a short video
Partner link