Skip to content
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
  1. Home
  2. Models
  3. GPT-5.2
  4. Estimate Complexity

See how GPT-5.2 compares on this challenge:

  • GPT-5.2 vs Claude Sonnet 4.6
  • GPT-5.2 vs Gemini 3.1 Pro Preview
  • GPT-5.2 vs Z.ai: GLM 5

4 models have responded to the "Estimate Complexity" challenge. Compare their approaches side-by-side on RIVAL. This response is part of RIVAL's open dataset of 5,600+ AI model responses.

Rival
Models
CompareBest ForArena
Sign Up
Sign Up
Back to GPT-5.2

Estimate Complexity

Gpt 5.2's response to the 'Estimate Complexity' challenge.

GPT-5.2
December 11, 2025
Text

?
Prompt

Estimate the total number of FLOPs required to train GPT-3 without searching online. Explain your reasoning step by step.

GPT-5.2
Response

gpt-5.2 logo
GPT-5.2Estimate Complexity
gpt-5.2 logo
GPT-5.2

Below is a back-of-the-envelope estimate for the total training compute (in FLOPs) for GPT‑3, done from first principles and common Transformer training heuristics.


1) What we’re estimating

We want total FLOPs over the whole training run:

[ \text{Total FLOPs} \approx (\text{FLOPs per token}) \times (\text{# training tokens}) ]

So we need:

  • # parameters (P) (GPT‑3 “175B” ⇒ (P \approx 1.75\times 10^{11}))
  • # training tokens (T) (we’ll estimate)
  • A way to relate FLOPs/token to (P)

2) FLOPs per token ≈ a small multiple of parameter count

A commonly used rule for dense Transformers is:

[ \text{Training FLOPs} \approx 6 , P , T ]

Why “6”?

  • A forward pass through a big dense network costs on the order of ~2 FLOPs per parameter (roughly one multiply-add per weight, counted as ~2 FLOPs).
  • Backward pass (gradients wrt activations + wrt weights) costs about ~2× forward for dense layers.
  • So forward + backward ≈ ~3× forward.
  • That yields about: [ \text{FLOPs/token} \approx 3 \times (2P) = 6P ]

This ignores some extras (attention score computations, softmax, layernorm, embedding lookups), but for very large models the big matrix multiplies dominate, and the (6PT) scaling is usually the right order of magnitude.

So we’ll use: [ \text{Total FLOPs} \approx 6PT ]


3) Estimate the number of training tokens (T)

We need an assumption. GPT‑3 is widely described as trained on hundreds of billions of tokens. Without looking it up, a reasonable guess range is:

  • Low: (T \approx 200\text{B} = 2\times 10^{11})
  • Mid: (T \approx 300\text{B} = 3\times 10^{11})
  • High: (T \approx 500\text{B} = 5\times 10^{11})

I’ll compute the mid estimate and show the range.


4) Compute total FLOPs

Given:

  • (P = 1.75\times 10^{11})
  • (T = 3\times 10^{11})

[ \text{Total FLOPs} \approx 6 \times (1.75\times 10^{11}) \times (3\times 10^{11}) ]

Multiply constants:

  • (6 \times 1.75 \times 3 = 31.5)

Multiply powers of ten:

  • (10^{11}\times 10^{11} = 10^{22})

So: [ \text{Total FLOPs} \approx 31.5 \times 10^{22} = 3.15\times 10^{23}\ \text{FLOPs} ]

Range using different token assumptions

  • If (T=2\times 10^{11}): [ 6 \cdot 1.75 \cdot 2 \times 10^{22} = 21 \times 10^{22} = 2.1\times 10^{23} ]
  • If (T=5\times 10^{11}): [ 6 \cdot 1.75 \cdot 5 \times 10^{22} = 52.5 \times 10^{22} = 5.25\times 10^{23} ]

5) Final estimate

Estimated total training compute for GPT‑3 (175B): [ \boxed{\text{On the order of }10^{23}\text{ FLOPs, roughly }3\times 10^{23}\text{ FLOPs (with a plausible range }2\text{–}5\times 10^{23}\text{).}} ]


If you tell me what you want to assume for the training tokens (e.g., 300B vs 500B) or whether you want to include optimizer overhead (Adam adds extra memory ops; FLOP impact is smaller but nonzero), I can refine the estimate accordingly.

Estimate Complexity

Turn this model response into notes, narration, or a short video

Auto NotesTranscriptNarrateVideo Cut

Partner link

This output is part of our open dataset — 5K+ AI responses across 200 models

About GPT-5.2

Capabilities

ConversationReasoningCode GenerationAnalysis

Categories

TextCodeMultimodal

Specifications

Provider
Openai
Released
2025-12-10
Size
XLARGE
Context
400,000 tokens

Keep exploring

SAME PROMPT

Claude Sonnet 4.6's version

Same prompt, different result

COMPARE

GPT-5.2 vs Gemini 3.1 Pro Preview

Both outputs, side by side

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival