4 models have responded to the "Debug This Architecture" challenge. Compare their approaches side-by-side on RIVAL. This response is part of RIVAL's open dataset of 5,600+ AI model responses.
Kimi K2 0905's response to the 'Debug This Architecture' challenge.
Here's the architecture for a real-time collaborative document editor (like Google Docs): **System Overview:** - Frontend: React SPA with WebSocket connections - Backend: Node.js API servers behind a load balancer (round-robin) - Database: PostgreSQL for document storage, Redis for session cache - Real-time: Each API server maintains its own WebSocket connections to clients - Sync Strategy: Last-write-wins with timestamps from client clocks - Storage: Documents saved as full HTML snapshots every 30 seconds - Auth: JWT tokens with 24-hour expiry, stored in localStorage - CDN: CloudFront for static assets, also caches API responses for 5 minutes **Data Flow:** 1. User types → change event sent via WebSocket to their connected server 2. Server writes change to PostgreSQL 3. Server broadcasts change to all WebSocket clients connected to THAT server 4. Other servers poll PostgreSQL every 2 seconds for changes 5. Conflict resolution: if two users edit the same paragraph, last timestamp wins **Scaling Plan:** - Horizontal scaling by adding more API servers - Database read replicas for read-heavy operations - Document partitioning by organization ID Identify all potential failure modes, race conditions, and scaling bottlenecks in this architecture. For each issue found, propose a specific solution with trade-offs.
Problem: Changes only broadcast to clients connected to the same server. Clients on other servers must wait up to 2 seconds for polling.
Solution: Implement Redis Pub/Sub for cross-server communication
// When a server receives a change
redisClient.publish(`document:${docId}:changes`, JSON.stringify(change));
redisClient.subscribe(`document:${docId}:changes`);
Trade-offs:
Problem: Last-write-wins based on client timestamps is unreliable (clock skew, malicious clients).
Solution: Implement Operational Transformation (OT) or CRDTs
// Example OT implementation
class OperationalTransform {
static transform(op1, op2) {
if (op1.position <= op2.position) {
return { ...op2, position: op2.position + op1.length };
}
return op2;
}
}
Trade-offs:
Problem: Full HTML snapshots every 30 seconds can overwrite concurrent changes.
Solution: Implement versioned storage with branching
CREATE TABLE document_versions (
id SERIAL PRIMARY KEY,
document_id UUID,
version INT,
parent_version INT,
content TEXT,
created_at TIMESTAMP,
merged BOOLEAN DEFAULT FALSE
);
Trade-offs:
Problem: Multiple servers writing to PostgreSQL simultaneously.
Solution: Implement optimistic locking
ALTER TABLE documents ADD COLUMN version INT DEFAULT 1;
UPDATE documents
SET content = :newContent, version = version + 1
WHERE id = :docId AND version = :expectedVersion;
Trade-offs:
Problem: 24-hour JWT tokens in localStorage are vulnerable to XSS attacks.
Solution: Implement refresh token rotation
// Use httpOnly cookies for refresh tokens
// Short-lived access tokens (15 minutes)
// Rotate refresh tokens on each use
Trade-offs:
Problem: Every keystroke writes to PostgreSQL, creating write amplification.
Solution: Implement write-through cache with batching
// Buffer changes in Redis
const changeBuffer = new Map();
setInterval(async () => {
if (changeBuffer.size > 0) {
await batchWriteToPostgres(Array.from(changeBuffer.values()));
changeBuffer.clear();
}
}, 1000); // Batch every second
Trade-offs:
Problem: 5-minute CDN cache on API responses causes stale data.
Solution: Implement cache invalidation strategy
// Use surrogate keys for fine-grained invalidation
res.set('Surrogate-Key', `doc-${docId} org-${orgId}`);
// Invalidate on updates
await fetch(`https://api.cloudfront.com/invalidate`, {
method: 'POST',
body: JSON.stringify({ paths: [`/api/documents/${docId}`] })
});
Trade-offs:
Problem: Users lose changes when WebSocket disconnects.
Solution: Implement offline queue with exponential backoff
class OfflineQueue {
constructor() {
this.queue = [];
this.backupInterval = setInterval(() => this.backupToLocal(), 5000);
}
enqueue(change) {
this.queue.push(change);
localStorage.setItem('offline-queue', JSON.stringify(this.queue));
}
}
Trade-offs:
Problem: In-flight writes lost on server crash.
Solution: Implement write-ahead log
// Write to WAL before processing
await redis.lpush(`wal:${docId}`, JSON.stringify({
id: uuid(),
operation: operation,
timestamp: Date.now()
}));
// Process from WAL on startup
const wal = await redis.lrange(`wal:${docId}`, 0, -1);
Trade-offs:
Problem: Full HTML snapshots become expensive for large documents.
Solution: Implement chunked storage with CRDTs
// Store document as chunks
const CHUNK_SIZE = 1000; // characters
class ChunkedDocument {
chunks = new Map();
insert(text, position) {
const chunkIndex = Math.floor(position / CHUNK_SIZE);
this.chunks.get(chunkIndex).insert(text, position % CHUNK_SIZE);
}
}
Trade-offs:
// Implement a hybrid approach
const EnhancedArchitecture = {
// Use CRDTs for conflict-free collaboration
syncStrategy: 'CRDT_with_vector_clocks',
// Event sourcing for audit trail
storage: 'event_sourcing_with_snapshots',
// Redis Streams for reliable message delivery
realTime: 'redis_streams_with_consumer_groups',
// Implement circuit breakers
resilience: 'circuit_breaker_with_fallback',
// Use consistent hashing for document distribution
scaling: 'consistent_hashing_by_document_id'
};
This comprehensive approach addresses the most critical issues first while building toward a more robust, scalable architecture.
Turn this model response into notes, narration, or a short video
Partner link