Skip to content
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
  1. Home
  2. Models
  3. MiniMax M2.5
  4. Estimate Complexity

See how MiniMax M2.5 compares on this challenge:

  • MiniMax M2.5 vs Claude Sonnet 4.6
  • MiniMax M2.5 vs Gemini 3.1 Pro Preview
  • MiniMax M2.5 vs Z.ai: GLM 5

4 models have responded to the "Estimate Complexity" challenge. Compare their approaches side-by-side on RIVAL. This response is part of RIVAL's open dataset of 5,600+ AI model responses.

Rival
Models
CompareBest ForArena
Sign Up
Sign Up
Back to MiniMax M2.5

Estimate Complexity

Minimax M2.5's response to the 'Estimate Complexity' challenge.

MiniMax M2.5
February 12, 2026
Text

?
Prompt

Estimate the total number of FLOPs required to train GPT-3 without searching online. Explain your reasoning step by step.

MiniMax M2.5
Response

minimax-m2.5 logo
MiniMax M2.5Estimate Complexity
minimax-m2.5 logo
MiniMax M2.5

To estimate the total number of floating-point operations (FLOPs) required to train GPT-3, we use the standard approximation that training a transformer model requires approximately 6 FLOPs per parameter per token. This accounts for both the forward and backward passes, with each parameter involved in roughly 6 operations per token.

Step-by-step reasoning:

  1. Number of parameters (N): GPT-3 (175B model) has 175 billion parameters.
  2. Number of tokens (T): The training dataset contains 300 billion tokens.
  3. FLOPs per parameter per token: Approximately 6 FLOPs.
  4. Total FLOPs: Multiply these three values:
    [ \text{Total FLOPs} = 6 \times N \times T = 6 \times 175 \times 10^9 \times 300 \times 10^9 = 3.15 \times 10^{23} \text{ FLOPs}. ]

This estimate aligns with commonly cited values in the literature. The quadratic attention term (arising from the sequence length) adds a negligible contribution (less than 2%) and is ignored.

Thus, the total FLOPs required to train GPT-3 is approximately (3.15 \times 10^{23}).

\boxed{3.15\times 10^{23}\ \text{FLOPs}}

Estimate Complexity

Turn this model response into notes, narration, or a short video

Auto NotesTranscriptNarrateVideo Cut

Partner link

This output is part of our open dataset — 5K+ AI responses across 200 models

About MiniMax M2.5

Capabilities

ConversationReasoningCode GenerationAnalysisAgentic Tool UsePlanningData Extraction

Categories

TextCode

Specifications

Provider
Minimax
Released
2026-02-12
Size
LARGE
Context
204,800 tokens

Keep exploring

SAME PROMPT

Claude Sonnet 4.6's version

Same prompt, different result

COMPARE

MiniMax M2.5 vs Gemini 3.1 Pro Preview

Both outputs, side by side

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival