Loading share button...

Z.ai: GLM 5vsGPT-4.1 Nano

39 challenges

Why Z.ai: GLM 5?

10 months newerFeb 2026

Why GPT-4.1 Nano?

6.6x cheaper overall$0.10/M in · $0.40/M out
5.2x more context1.0M
3 / 39

Estimate Complexity

reasoning·hard

Tests an AI's ability to make educated estimates based on technical knowledge

Z.ai: GLM 5

Z.ai: GLM 5

The total number of FLOPs required to train GPT‑3 is approximately 3.15 × 10²³.

Step‑by‑step reasoning:

  1. Model size: GPT‑3 has 175 billion (1.75 × 10¹¹) trainable parameters.

  2. Training data: According to the paper abstract, the model was trained on 300 billion (3 × 10¹¹) tokens.

  3. FLOPs per token for training a transformer:

    • Forward pass: each parameter is used in one multiply‑add operation → ~2 FLOPs per parameter → 2 N FLOPs per token.
    • Backward pass (gradient computation): roughly twice the forward cost → ~4 N FLOPs per token.
    • Total: ~6 N FLOPs per token.
      This approximation is standard for large transformer models and neglects small overheads like attention quadratic terms (which add only ~1–2% for GPT‑3’s sequence length).
  4. Calculation:
    Total FLOPs ≈ 6 × (1.75 × 10¹¹) × (3 × 10¹¹)
    = 6 × 5.25 × 10²²
    = 3.15 × 10²³.

  5. Consistency check: The GPT‑3 paper reports a training compute of 3,640 PF‑days. Converting:
    1 PF‑day = 10¹⁵ FLOP/s × 86400 s = 8.64 × 10¹⁹ FLOPs.
    3,640 PF‑days = 3,640 × 8.64 × 10¹⁹ ≈ 3.14 × 10²³ FLOPs, matching the estimate.

Thus, the total FLOPs required to train GPT‑3 is about 3.15 × 10²³.

GPT-4.1 Nano

GPT-4.1 Nano

Let's estimate the total number of floating-point operations (FLOPs) required to train GPT-3, based on what is known about its size, training data, and typical training procedures. Here's a step-by-step reasoning process:

1. Understand the model size and parameters:

  • GPT-3 has approximately 175 billion parameters.
  • Parameters are stored in FP32 or FP16 precision; often training uses mixed precision to reduce FLOPs slightly.

2. Determine the training dataset size:

  • GPT-3 was trained on hundreds of billions of tokens. Reports suggest around 300 billion tokens.
  • For simplicity, assume 300 billion tokens.

3. Estimate the number of training steps:

  • To process 300 billion tokens, depending on batch size:

    Suppose:

    • Batch size = 1 million tokens (a plausible large batch size for such training, approximating high-performance hardware)

    Number of steps = Total tokens / Batch size:

    ( ext{Steps} = rac{300 imes 10^9}{10^6} = 300,000 )

    But in practice, the batch size per GPU (or per node) is smaller—say 1,000 tokens per batch, with multiple GPUs. The total number of steps is roughly on the order of 300,000 to 500,000.

    To be conservative, take approximately 300,000 steps for total training.

4. FLOPs per forward and backward pass:

  • For each token, the transformer computes several matrix multiplications.
  • Typically, the dominant cost per token in a transformer model scales with the model size.

A common approximation for FLOPs per token for training a transformer is:

( ext{FLOPs per token} approx 2 imes ext{number of parameters} imes ext{sequence length} )

But this depends on the specifics of the architecture. Historical estimates suggest:

  • For large transformer models, about 6 FLOPs per parameter per token are required for training (this accounts for both forward and backward passes). This is a rough estimate from various literature.

Thus,

( ext{FLOPs per token} approx 6 imes ext{parameters} )

Plugging in GPT-3's parameters:

( 6 imes 175 imes 10^9 = 1.05 imes 10^{12} ext{ FLOPs per token} )

Note: This seems high; more refined estimates consider the overall cost per token is roughly on the order of a few trillion FLOPs, depending on the implementation.

Alternatively, a typical approximation used in literature (e.g., OpenAI's blog) is about 3 to 5 FLOPs per parameter per token.

Let's take 3 FLOPs per parameter per token for a more conservative estimate:

( 3 imes 175 imes 10^9 = 525 imes 10^9 = 5.25 imes 10^{11} ext{ FLOPs per token} )

Similarly, for total FLOPs:

( ext{Total FLOPs} approx ext{number of tokens} imes ext{FLOPs per token} )

Using 300 billion tokens and 5.25 × 10^{11} FLOPs per token:

( ext{Total FLOPs} approx 300 imes 10^9 imes 5.25 imes 10^{11} ) ( = (300 imes 5.25) imes 10^{20} ) ( = 1575 imes 10^{20} = 1.575 imes 10^{23} )

5. Adjust for training efficiency and hardware:

  • Not every FLOP is used efficiently.
  • Typically, the total number of FLOPs gives an upper bound.
  • FLOPs estimates often consider the entire training process, including multiple epochs, but most models are trained with many passes over the data; in this case, since the tokens are large and the data volume is huge, training is roughly a single pass or a few passes.

6. Final estimate:

Given the approximations, a rough but reasonable total FLOPs estimate for training GPT-3:

( oxed{ ext{Total FLOPs} sim 10^{23} ext{ FLOPs} } )

Summary:

  • Parameters: 175 billion
  • Tokens processed: ~300 billion
  • FLOPs per token: about 5 × 10^{11}
  • Total FLOPs: approximately 10^{23} FLOPs

Answer: The total number of FLOPs required to train GPT-3 is roughly on the order of 10^23 FLOPs. This estimate considers GPT-3's 175 billion parameters, training on approximately 300 billion tokens, and accounts for the computational cost per token during training.

Vote
2 / 39

AI Board Game Logic

reasoning·medium

Tests an AI's ability to understand game rules and strategy

Z.ai: GLM 5

Z.ai: GLM 5

GPT-4.1 Nano

GPT-4.1 Nano

Vote
3 / 39

Logic Puzzle

reasoning·medium

Tests an AI's ability to solve a simple but potentially confusing logic puzzle

Z.ai: GLM 5

Z.ai: GLM 5

Sally has 1 sister.

Here is the breakdown:

  1. Since the brothers are all siblings, they share the same sisters.
  2. If each brother has 2 sisters, that means there are 2 girls in total in the family.
  3. Sally is one of those girls.
  4. Therefore, the other girl is Sally's only sister.
GPT-4.1 Nano

GPT-4.1 Nano

Sally has 2 sisters.

Here's the reasoning:

  • Sally has 3 brothers.
  • Each brother has 2 sisters.
  • Since Sally is one of those sisters, the other sister is the other girl brothers share.

Therefore, Sally has 2 sisters in total.

Vote
Loading