Skip to content
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
Rival
Models
CompareBest ForArena
Sign Up
Sign Up

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival
  1. Home
  2. Models
  3. Z.ai: GLM 5
  4. Estimate Complexity

See how Z.ai: GLM 5 compares on this challenge:

  • Z.ai: GLM 5 vs Claude Sonnet 4.6
  • Z.ai: GLM 5 vs Gemini 3.1 Pro Preview

3 models have responded to the "Estimate Complexity" challenge. Compare their approaches side-by-side on RIVAL. This response is part of RIVAL's open dataset of 5,600+ AI model responses.

Rival
Models
CompareBest ForArena
Sign Up
Sign Up
Back to Z.ai: GLM 5

Estimate Complexity

Glm 5's response to the 'Estimate Complexity' challenge.

Z.ai: GLM 5
February 11, 2026
Text

?
Prompt

Estimate the total number of FLOPs required to train GPT-3 without searching online. Explain your reasoning step by step.

Z.ai: GLM 5
Response

glm-5 logo
Z.ai: GLM 5Estimate Complexity
glm-5 logo
Z.ai: GLM 5

The total number of FLOPs required to train GPT‑3 is approximately 3.15 × 10²³.

Step‑by‑step reasoning:

  1. Model size: GPT‑3 has 175 billion (1.75 × 10¹¹) trainable parameters.

  2. Training data: According to the paper abstract, the model was trained on 300 billion (3 × 10¹¹) tokens.

  3. FLOPs per token for training a transformer:

    • Forward pass: each parameter is used in one multiply‑add operation → ~2 FLOPs per parameter → 2 N FLOPs per token.
    • Backward pass (gradient computation): roughly twice the forward cost → ~4 N FLOPs per token.
    • Total: ~6 N FLOPs per token.
      This approximation is standard for large transformer models and neglects small overheads like attention quadratic terms (which add only ~1–2% for GPT‑3’s sequence length).
  4. Calculation:
    Total FLOPs ≈ 6 × (1.75 × 10¹¹) × (3 × 10¹¹)
    = 6 × 5.25 × 10²²
    = 3.15 × 10²³.

  5. Consistency check: The GPT‑3 paper reports a training compute of 3,640 PF‑days. Converting:
    1 PF‑day = 10¹⁵ FLOP/s × 86400 s = 8.64 × 10¹⁹ FLOPs.
    3,640 PF‑days = 3,640 × 8.64 × 10¹⁹ ≈ 3.14 × 10²³ FLOPs, matching the estimate.

Thus, the total FLOPs required to train GPT‑3 is about 3.15 × 10²³.

Estimate Complexity

Turn this model response into notes, narration, or a short video

Auto NotesTranscriptNarrateVideo Cut

Partner link

This output is part of our open dataset — 5K+ AI responses across 200 models

About Z.ai: GLM 5

Capabilities

ConversationReasoningCode GenerationAnalysisAgentic Tool UseTool Use

Categories

TextCode

Specifications

Provider
Zhipu
Released
2026-02-11
Size
XLARGE
Context
202,752 tokens

Keep exploring

SAME PROMPT

Claude Sonnet 4.6's version

Same prompt, different result

COMPARE

Z.ai: GLM 5 vs Gemini 3.1 Pro Preview

Both outputs, side by side

Compare AI vibes, not scores. Side-by-side outputs across the world's best models.

@rival_tips

Explore

  • Compare Models
  • All Models
  • Leaderboard
  • Challenges

Discover

  • AI Creators
  • AI Tools
  • The Graveyard

Developers

  • Developer Hub
  • MCP Server
  • .llmignore
  • Badges
  • RIVAL Datasets

Connect

  • Methodology
  • Sponsor
  • Partnerships
  • Privacy Policy
  • Terms
  • RSS Feed
© 2026 Rival