4 models have responded to the "Estimate Complexity" challenge. Compare their approaches side-by-side on RIVAL. This response is part of RIVAL's open dataset of 5,600+ AI model responses.
GPT-4.1 Nano's response to the Estimate Complexity challenge.
Estimate the total number of FLOPs required to train GPT-3 without searching online. Explain your reasoning step by step.
Let's estimate the total number of floating-point operations (FLOPs) required to train GPT-3, based on what is known about its size, training data, and typical training procedures. Here's a step-by-step reasoning process:
1. Understand the model size and parameters:
2. Determine the training dataset size:
3. Estimate the number of training steps:
To process 300 billion tokens, depending on batch size:
Suppose:
Number of steps = Total tokens / Batch size:
( ext{Steps} = rac{300 imes 10^9}{10^6} = 300,000 )
But in practice, the batch size per GPU (or per node) is smaller—say 1,000 tokens per batch, with multiple GPUs. The total number of steps is roughly on the order of 300,000 to 500,000.
To be conservative, take approximately 300,000 steps for total training.
4. FLOPs per forward and backward pass:
A common approximation for FLOPs per token for training a transformer is:
( ext{FLOPs per token} approx 2 imes ext{number of parameters} imes ext{sequence length} )
But this depends on the specifics of the architecture. Historical estimates suggest:
Thus,
( ext{FLOPs per token} approx 6 imes ext{parameters} )
Plugging in GPT-3's parameters:
( 6 imes 175 imes 10^9 = 1.05 imes 10^{12} ext{ FLOPs per token} )
Note: This seems high; more refined estimates consider the overall cost per token is roughly on the order of a few trillion FLOPs, depending on the implementation.
Alternatively, a typical approximation used in literature (e.g., OpenAI's blog) is about 3 to 5 FLOPs per parameter per token.
Let's take 3 FLOPs per parameter per token for a more conservative estimate:
( 3 imes 175 imes 10^9 = 525 imes 10^9 = 5.25 imes 10^{11} ext{ FLOPs per token} )
Similarly, for total FLOPs:
( ext{Total FLOPs} approx ext{number of tokens} imes ext{FLOPs per token} )
Using 300 billion tokens and 5.25 × 10^{11} FLOPs per token:
( ext{Total FLOPs} approx 300 imes 10^9 imes 5.25 imes 10^{11} ) ( = (300 imes 5.25) imes 10^{20} ) ( = 1575 imes 10^{20} = 1.575 imes 10^{23} )
5. Adjust for training efficiency and hardware:
6. Final estimate:
Given the approximations, a rough but reasonable total FLOPs estimate for training GPT-3:
( oxed{ ext{Total FLOPs} sim 10^{23} ext{ FLOPs} } )
Summary:
Answer: The total number of FLOPs required to train GPT-3 is roughly on the order of 10^23 FLOPs. This estimate considers GPT-3's 175 billion parameters, training on approximately 300 billion tokens, and accounts for the computational cost per token during training.
Turn this model response into notes, narration, or a short video
Partner link